

LIGATION OF OLIGONUCLEOTIDES INDUCED BY CHARGE-TRANSFER INTERACTIONS

Laura Nicollet, Kévan Pérez de Carvasal, Michael Smietana, François Morvan

Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier, France

Intermolecular interactions, like hydrogen bonding or Van-Der-Waals forces, are ubiquitous in chemistry guiding both natural (DNA, proteins) and synthetic supramolecular assemblies. Among these interactions, charge transfer (CT) interactions received a particular attention due to the wide range of potential applications.¹ Charge transfer can be defined as the electrostatic attraction between an electron-rich entity, the donor (D), and an electron-poor unit, the acceptor (A). This attraction allowed an alternative stacking between these two species that can lead to strong supramolecular assemblies called CT-complexes.² Among the various D and A pairs that have been identified, the most popular pair for forming CT complexes is naphthalene diimide (NDI) and dialkoxynaphtalene (DAN).³

In this context, DAN/NDI interactions can be used to induce proximity effect between two biomolecules, such as oligonucleotides strands.⁴ Usually, the ligation of two oligonucleotides carrying reactive functions proceed through the use of a third strand, acting as a template to bring the reactive groups in close proximity.⁵ In this project, we propose to use the charge transfer interaction to enhance the effective molarity of two non-complementary DNA strands in diluted media.

We achieved this by synthesizing DAN and NDI phosphoramidite building blocks,⁶ which were introduced into DNA sequences. With this method, we developed an innovative and universal ligation approach that proceeds at submicromolar concentrations and in mild aqueous conditions.

References

¹ Das, A., Ghosh, S., Angew. Chem. Int. Ed. 2014, 53, 2038–2054.

² Bender, C. J., *Chem. Soc. Rev.* **1986**, *15*, 475–502.

³ Ikkanda, B. A., Iverson, B. L., Chem. Commun. 2016, 52, 7752–7759.

⁴ Pérez de Carvasal, K., Riccardi, C., Russo Krauss, I., Cavasso, D., Vasseur, J.-J., Smietana, M., Morvan, F., Montesarchio, D., Int. J. Mol. Sci. **2021**, 22, 9510.

⁵ Di Pisa, M., Seitz, O., *ChemMedChem* **2017**, *12*, 872–882.

⁶ Carvasal, K. P. de, Aissaoui, N., Vergoten, G., Bellot, G., Vasseur, J.-J., Smietana, M., Morvan, F., *Chem. Commun.* **2021**, *57*, 4130–4133.