

COMBINED ASYMMETRIC AND PHOTOREDOX CATALYSIS FOR THE SYNTHESIS OF CHIRAL AMINES

Géraldine Masson,1,2

¹Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, Gif-sur-Yvette, France ² HitCat, Segens-CNRS joint laboratory, Segens'Lab, Porcheville, France

E-mail: geraldine.masson@cnrs.fr

Nitrogen-activated carbon-carbon double bonds offer significant potential for constructing a diverse array of nitrogen-containing products. To expand the utility of these substrates, our research focused on exploring the reactivity of promising enamide derivatives.

We developed innovative methods for the α , β -difunctionalization of enamides using a synergistic twostep strategy combining asymmetric organocatalysis with photoredox catalysis. A key aspect of our approach involved employing thiol as a transient reaction partner, which played a crucial role in ensuring the success of these processes and enabling the synthesis of a diverse range of enantioenriched α , β substituted amines.¹

Moreover, we successfully implemented stereoselective and enantioselective photocatalytic processes for synthesizing both α - and β -chiral amines. In these methods, amino acids proved to be ideal linchpins, facilitating selective transformations and achieving high enantioselectivity. 2,3

This lecture will highlight our contributions, emphasizing their applications in synthesizing biologically active natural and synthetic compounds.

References :

¹D. Bouchet, T. Varlet, G. Masson, *Acc. Chem. Res.* **2022**, 55, 3265

²Serafino, A.; Pierre, H.; Le Vaillant, F.; Boutet, J.; Guillamot, G.; Neuville, L.; Masson, G. Org. Lett. **2023**, 25, 9249

³Ma, W.-Y.; Leone, M.; Derat, E.; Retailleau, P.; Reddy, C. R.; Neuville, L.; Masson, G. Angew. Chem. Int. Ed. **2024**, e202408154